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Abstract.14

Background: Cerebrovascular dysfunction confers risk for functional decline in Alzheimer’s disease (AD), yet the clinical
interplay of these two pathogenic processes is not well understood.

15

16

Objective: We utilized Alzheimer’s Disease Neuroimaging Initiative (ADNI) data to examine associations between periph-
erally derived soluble cell adhesion molecules (CAMs) and clinical diagnostic indicators of AD.

17
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Methods: Using generalized linear regression models, we examined cross-sectional relationships of soluble plasma vascular
cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-Selectin to baseline diagnosis and
functional impairment (clinical dementia rating sum-of-boxes, CDR-SB) in the ADNI cohort (n = 112 AD, n = 396 mild
cognitive impairment (MCI), n = 58 cognitively normal). We further analyzed associations of these biomarkers with brain-
based AD biomarkers in a subset with available cerebrospinal fluid (CSF) data (n = 351). p-values derived from main effects
and interaction terms from the linear regressions were used to assess the relationship between independent and dependent
variables for significance (significance level was set at 0.05 a priori for all analysis).
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Results: Higher mean VCAM-1 (p = 0.0026) and ICAM-1 (p = 0.0189) levels were found in AD versus MCI groups; however,
not in MCI versus cognitively normal groups. Only VCAM-1 was linked with CDR-SB scores (p = 0.0157), and APOE �4
genotype modified this effect. We observed independent, additive associations when VCAM-1 and CSF amyloid-� (A�42),
total tau, phosphorylated tau (P-tau), or P-tau/A�42 (all < p = 0.01) were combined in a CDR-SB model; ICAM-1 showed a
similar pattern, but to a lesser extent.
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Conclusion: Our findings indicate independent associations of plasma-based vascular biomarkers and CSF biomarkers with
AD-related clinical impairment.
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INTRODUCTION31

Although amyloid deposition is considered to be32

the central inciting event in the development of clin-33

ical Alzheimer’s disease (AD) [1], age-associated34

cerebral vascular disease and AD have long been rec-35

ognized as frequently co-morbid entities. Abundant36

contemporary epidemiologic data point toward clin-37

ically relevant interrelationships between vascular38

dysfunction and AD, as evidenced by a strong asso-39

ciations between mid-life vascular risk factors and40

later-life clinical AD [2–9]. Mid-life vascular risk fac-41

tors have moreover been linked to later-life amyloid42

burden [10, 11], including in those with high poly-43

genic risk for AD [10]. In support of this narrative,44

declining dementia incidence in developed countries45

is thought to be related to general improvements in46

preventive disease management [12].47

Despite these findings and consistent neuropatho-48

logical observations of highly prevalent mixed49

pathology in the elderly [13], the question of whether50

concurrent cerebral vascular disease and AD patholo-51

gies represent biologically intertwined or parallel but52

non-synergistic processes is difficult to fully eluci-53

date and has been a topic of frequent historical debate54

[13–24]. Given the critically unmet need for effec-55

tive preventive and therapeutic strategies for AD and56

the modifiable nature of vascular risk factors, disen-57

tangling various pathogenic processes that underlie58

risk for age-related cognitive decline and identifica-59

tion of biomarkers that may be sensitive to modifiable60

vascular-mediated risk is of high clinical import.61

The majority of prior studies analyzing con-62

tributions of co-existing cerebrovascular and AD63

pathology have found independent and/or additive64

rather than interactive associations to risk for cog-65

nitive decline; however, most studies to-date have66

largely focused on relationships of imaging-based67

white matter disease burden to amyloid pathology68

[23, 25, 26]. In contrast, results from more recent69

studies using composite [27] or expanded [28, 29]70

cerebrovascular biomarker panels or AD biomarkers71

that are inclusive of amyloid, tau, and neurode-72

generative pathologies [26, 30] suggest that some73

synergistic aspects of vascular-mediated associations 74

to AD pathogenesis may have been previously under- 75

appreciated. 76

We sought to utilize peripherally derived molecu- 77

lar measures of vascular endothelial dysfunction as 78

a means by which to assess for potentially more 79

nuanced contributions of vascular risk to AD-asso- 80

ciated pathologies and clinical AD. Cell adhesion 81

molecules (CAMs) are expressed on the vascu- 82

lar endothelial surface and facilitate blood-borne 83

leukocyte recruitment and trafficking across the vas- 84

cular endothelium to sites of tissue damage via 85

stereotyped stages: initial leukocyte tethering and 86

rolling along the endothelial vessel wall (L- 87

Selectin, P-Selectin, E-Selectin, and vascular cell 88

adhesion molecule-1 (VCAM-1)), followed by 89

firm adhesion (intercellular adhesion molecule-1 90

(ICAM-1), VCAM-1), and eventual chemotaxis and 91

transendothelial cell migration (PECAM; Platelet 92

And Endothelial Cell Adhesion Molecule) [31–36]. 93

Membrane-bound CAMs are subsequently shed as 94

soluble forms after a time delay, presumably as part 95

of a feedback mechanism [37], and the soluble frac- 96

tion can be conveniently measured in blood samples 97

to detect processes of active inflammation involving 98

the vascular endothelium. 99

Elevated circulating and/or cerebrospinal fluid 100

(CSF) CAMs have been reported in relation to a 101

variety of vascular risk factors and cardiovascular 102

disease [38–44], cerebrovascular disease [45], neu- 103

roimmunological disorders such as multiple sclerosis 104

[46, 47], and a broad spectrum of immune-mediated 105

disorders including lupus erythematosus, rheuma- 106

toid arthritis, asthma, and cancer [39]. There have 107

been a limited number of studies to-date assessing 108

relationships of blood- or CSF-borne CAMs to 109

cognitive aging and dementia in humans [32, 48, 110

57–62, 49–56]. However, samples sizes of blood- 111

borne CAMs in most studies have been relatively 112

small, and to our knowledge no studies thus far have 113

tested for interactive associations between soluble 114

plasma CAMs and CSF AD biomarkers in associ- 115

ation with the clinical AD spectrum phenotype in a 116

well-characterized AD cohort.
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In this study, we analyzed cross-sectional asso-117

ciations of soluble plasma VCAM-1, ICAM-1, and118

E-Selectin to baseline diagnosis and functional sever-119

ity staging in Alzheimer’s Disease Neuroimaging120

Initiative (ADNI) participants. ADNI is a highly121

selective cohort that has been specifically enriched122

for biomarker studies of AD-related cognitive decline123

[63]. Utilizing the three bloodborne CAMs that124

were available in ADNI plasma proteomics data,125

we hypothesized that concomitantly higher plasma126

CAM levels would correlate with severity of base-127

line diagnosis and functional impairment along the128

prodromal-to-clinical AD dementia spectrum and129

tested for modifying effects of Apolipoprotein E130

(APOE) genotyping on functional impairment. Based131

upon suggestions of interactive associations of CAMs132

and AD pathology in recent experimental mod-133

els, we also hypothesized peripheral CAMs would134

have a synergistic relationship with brain-based135

AD biomarkers in influencing baseline functional136

impairment, which we assessed using CSF biomark-137

ers of AD pathology and neurodegeneration in138

a subset of subjects for whom those data were139

available.

140

METHODS141

Participants142

Data used in this study were obtained from data of143

the original ADNI cohort (http://adni.loni.usc.edu).144

ADNI is a multi-site, longitudinal observational study145

led by Principal Investigator Michael W. Weiner,146

MD, that was initiated in 2004 as ADNI-1, and has147

been extended by successive renewals to the cur-148

rent ADNI-3 cohort that was launched in 2016. The149

primary goal of ADNI since its inception has been150

to clarify the roles of imaging and other biomark-151

ers in AD clinical progression in order to validate152

their use in AD clinical trials [63]. Written informed153

consent was obtained for all participants, and prior154

Institutional Review Board approval was obtained at155

each participating institution. Up-to-date information156

regarding ADNI can be found at http://www.adni-157

info.org.158

Clinical and cognitive assessment159

All subjects underwent an extensive clinical diag-160

nostic evaluation, including basic mental status, neu-161

ropsychological, physical, and neurological exam- 162

inations. A full description of assessment used can be 163

found at http://adni.loni.usc.edu/methods/documents/ 164

Dementia severity was graded by the Clinical 165

Dementia Rating (CDR) Scale [64, 65], a mea- 166

sure that is widely employed in AD clinical care 167

and research to quantify functional impairment. The 168

CDR is derived through interview with patients and 169

informants and consists of 6 domains (memory, ori- 170

entation, judgment and problem solving, community 171

affairs, home and hobbies, and personal care), each of 172

which are rated on a 5-point scale (0, no impairment; 173

0.5, questionable impairment; 1, mild impairment; 174

2, moderate impairment; and 3, severe impairment). 175

In clinical practice, the algorithm-generated global 176

CDR score produces a total possible score of 0 to 177

3, denoting a global level of functional status from 178

no impairment (global CDR 0) to severe impairment 179

(global CDR 3) using the descriptors noted above for 180

the individual domain box scores. The CDR sum of 181

boxes score (CDR-SB), by contrast, utilizes a sum- 182

mary of the individual domain box scores and yields 183

a total score of 0 to 18 (higher scores indicating 184

greater impairment), and is frequently used in AD 185

research given greater sensitivity in dementia staging 186

and tracking of progression over time [66]. 187

All participants were given diagnoses of cog- 188

nitively normal (CN), mild cognitive impairment 189

(MCI), or probable AD; for participants with MCI 190

(global CDR score of 0.5), the inclusion criterion 191

was an amnestic type (CDR memory domain box 192

score of at least 0.5), to specifically ensure enrich- 193

ment of the cohort with participants at high risk 194

for conversion to AD. All AD patients satisfied 195

NINCDS-ADRDA diagnostic criteria [67] for prob- 196

able AD and had questionable to very mild dementia 197

(global CDR score of 0.5 but considered borderline 198

dementia) or mild (global CDR score of 1) demen- 199

tia. Additionally, ADNI was specifically designed to 200

minimize non-AD related risk factors for cognitive 201

impairment or dementia, including vascular demen- 202

tia. Inclusion criteria for ADNI-1 included a modified 203

Hachinski ischemic score (MHIS) [68] of 4 or less 204

to limit potential contributions from cerebrovascular 205

disease; previously published baseline characteristics 206

for ADNI-1 noted no significant difference between 207

CN, MCI, and AD groups with respect to MHIS [69]. 208

Biomarkers 209

ADNI proteomics data were collected for a subset 210

of ADNI-1 (the original ADNI cohort) participants 211

http://adni.loni.usc.edu
http://www.adni-info.org
http://adni.loni.usc.edu/methods/documents/
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who enrolled in this sub-study at baseline. The mul-212

tiplex panel was based upon Luminex immunoassay213

technology and had been developed by Rules Based214

Medicine (MyriadRBM) to measure a range of215

inflammatory, metabolic, lipid, and other disease216

relevant indices. A 190-analyte, plasma-based panel217

of biomarkers previously reported to be related to218

cell-signaling or disease processes such as AD, meta-219

bolic disorders, inflammation, cancer, and cardiovas-220

cular disease were analyzed through the Biomarkers221

Consortium Project “Use of Targeted Multiplex222

Proteomic Strategies to Identify Plasma-Based223

Biomarkers in Alzheimer’s Disease,” 146 of224

which met quality control standards. Biomarkers225

of vascular endothelial dysfunction used in this226

study included baseline peripheral blood-derived227

VCAM-1, ICAM-1, and E-Selectin. Further details228

regarding ADNI proteomics procedures can be229

found in the data primer, “Biomarkers Consortium230

Project: Use of Targeted Multiplex Proteomic231

Strategies to Identify Plasma-Based Biomarkers in232

Alzheimer’s Disease” (http://adni.loni.usc.edu/wp-233

content/uploads/2010/12/BC-Plasma-Proteomics-234

Analysis-Plan.pdf).235

A subset of ADNI participants also underwent a236

lumbar puncture sub-study at the time of periph-237

eral blood collection at baseline. CSF specimens238

for biomarkers were processed by the Biomarker239

Core of ADNI at the Translational Research Lab-240

oratory, Department of Pathology & Laboratory241

Medicine at the University of Pennsylvania Medi-242

cal School, under the direction of Drs. Leslie M.243

Shaw and John Trojanowski. The Luminex multiplex244

immunoassay platform was used for measurements245

of amyloid-�, 42-residue peptide (A�42), total tau246

(T-tau), and phosphorylated tau (P-tau). Over 50247

studies have demonstrated clinical sensitivity and248

specificity for these biomarkers at greater than249

80% each. Further details regarding ADNI CSF250

Biomarker Core procedures can be found in the data251

primer, “An Overview of the first 8 ADNI CSF252

Batch Analyses” (http://adni.loni.usc.edu/methods/253

documents/).254

APOE genotyping was performed at screen-255

ing using established protocols, the details of256

which can be found at http://adni.loni.usc.edu/meth257

ods/documents/.258

Statistical analyses259

Distributions of peripheral blood levels of CAMs260

(VCAM-1, ICAM-1, and E-Selectin) and CSF261

biomarkers (A�42, T-tau, and P-tau) for the entire 262

sample were assessed for normality. Using the 263

Shapiro-Wilk test, all plasma CAM and CSF data 264

were found to have non-normal distributions (all 265

p ≤ 0.005). Thus, all plasma and CSF biomark- 266

ers were log-transformed for subsequent analysis, 267

and then back transformed for graphical depic- 268

tions. 269

A generalized linear model was used to assess 270

VCAM-1, ICAM-1, and E-selectin concentrations 271

(log normal) for each level of baseline diagnosis (CN, 272

MCI, or AD). Using a generalized linear model (the 273

GLIMMIX procedure), CDR-SB and the CDR mem- 274

ory box sub-scores (CDR-Mem) were modeled as 275

binomial distributions by each dependent variable 276

(VCAM-1, ICAM-1, and E-Selectin). We hypothe- 277

sized that associations between the CDR-SB and each 278

of the CAMs would be greater among those with 279

the highest risk for AD, so we conducted additional 280

analyses to evaluate effect modification by selected 281

known risk factors for AD (e.g., APOE genotype: 282

APOE �4 non-carrier, APOE �4 heterozygote, or 283

APOE �4 homozygote), age, sex, and family history 284

of AD). This would allow us to understand if the rela- 285

tionship between CDR-SB and each of the CAMS 286

was being driven by factors other than our main 287

independent variables. Interaction terms were tested 288

for significance and included in the model when 289

significant. 290

Using a generalized linear model (the GLIMMIX 291

procedure), CDR-SB was modeled as a bino- 292

mial distribution by the combination (fit plane) of 293

peripheral plasma CAMs and CSF AD biomarkers 294

(CSF A�42, T-tau, P-tau, and P-tau/A�42 ratio, all 295

log normal distributions). To understand if effects 296

were interactive or additive, interaction terms were 297

tested for significance and included if appropri- 298

ate. Individual p-values of the dependent variables 299

in the model were used to test the contribution 300

of these variables. Interaction terms and correla- 301

tions between CAMs and CSF biomarkers were 302

assessed as a check against concerns over multi- 303

collinearity. 304

Familywise alpha was maintained at 0.05 using 305

the Holm adjustment for multiple comparisons 306

where appropriate (adjusted p-values are reported, 307

unless otherwise stated). Significance level was 308

set at 0.05 a priori. Classic sandwich estimation 309

was used to adjust for any model misspecifi- 310

cation. All statistical analyses were performed 311

using SAS version 9.4 (The SAS Institute; Cary, 312

NC).

http://adni.loni.usc.edu/wp-content/uploads/2010/12/BC-Plasma-Proteomics-Analysis-Plan.pdf
http://adni.loni.usc.edu/methods/documents/
http://adni.loni.usc.edu/methods/documents/
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RESULTS313

Participants314

Data were derived from the original ADNI cohort315

(ADNI-1), which consisted of approximately 200316

people with early AD, 400 people with MCI, and317

200 CN older individuals. A cohort of 566 ADNI-318

1 participants (n = 112 AD, n = 396 MCI, n = 58319

CN) for whom proteomics data were available were320

included in the current study. Baseline demographic321

data including age, sex, and education level (summa-322

rized in Table 1), showed expected diagnosis-related323

characteristics with respect to CDR-SB and CDR-324

Mem scores. In our subset of the ADNI-1 cohort, we325

observed the same discrepancy related to higher pro-326

portion of male participants in MCI versus CN and327

AD groups that had previously been reported for the328

entire ADNI-1 cohort [69]. There were no major dif-329

ferences in vascular risk (as measured by the MHIS)330

between CN, MCI, and AD groups that would be331

expected to confound our analyses (Table 1).332

Baseline diagnosis333

Plasma VCAM-1 levels for AD, MCI, and CN were334

2.89 [2.87, 2.91], 2.86 [2.85, 2.87], and 2.84 [2.82,335

2.87] ng/ml (mean [95% CI]), respectively (Fig. 1a).336

Participants diagnosed with AD had significantly337

higher mean VCAM-1 levels compared with the MCI338

(p = 0.0026) and CN (p = 0.0028) diagnostic groups;339

however, VCAM-1 levels in CN and MCI groups340

were similar (CN versus MCI; p = 0.2687). Mean341

ICAM-1 levels for AD, MCI, and CN were 2.04 [2.01,342

2.07], 2.00 [1.98, 2.01] and 2.01 [1.97, 2.05] ng/ml.343

Participants with AD had higher mean ICAM-1 con-344

centrations relative to those with MCI (p = 0.0189),345

but not in comparison with the CN group (AD versus346

CN; p = 0.4187) (Fig. 1b). ICAM-1 concentrations347

were not significantly different in the CN versus MCI348

group comparison (p = 0.5639). Mean E-Selectin lev-349

els for AD, MCI, and CN were 6.56 [6.11, 7.04], 6.58350

[6.34, 6.84], and 6.79 [6.17, 7.47] ng/ml, respectively.351

E-Selectin levels did not differ between patients with352

AD, MCI, or CN diagnoses (p = 0.8280, Fig. 1c).353

Functional status staging and CDR memory354

sub-score355

Across the entire sample, baseline plasma VCAM-356

1 levels were associated with greater functional357

impairment stage at study entry as indicated by358

higher CDR-SB scores (p = 0.0157). Similarly, higher 359

plasma VCAM-1 levels were associated with severity 360

of memory impairment (as indicted by higher CDR- 361

Mem sub-score) at baseline (p = 0.0071). Neither 362

ICAM-1 (p = 0.0645 and p = 0.2489, respectively) 363

nor E-selectin levels (p = 0.5700 and p = 0.6604, 364

respectively) levels were associated with CDR-SB or 365

CDR-Mem scores. 366

The effects of APOE genotype, age, sex, and 367

family history 368

Severity of functional status (CDR-SB) modeled 369

by VCAM-1 level and APOE genotype showed that 370

APOE status modified the relationship of VCAM- 371

1 to CDR-SB (Supplementary Fig. 1a). Although 372

participants with higher CDR-SB scores also had 373

higher VCAM-1 levels, regardless of APOE4 status, 374

we observed effect modification by genotype, such 375

that APOE �4 heterozygotes (2.66 [2.39, 2.96]) and 376

homozygotes (3.02 [2.47, 3.69]) (both p < 0.0001) 377

had greater respective functional impairment scores 378

at baseline (e.g., higher CDR-SB scores) than APOE 379

�4 non-carriers (1.68 [1.50, 1.88]). 380

Age did not significantly influence the associ- 381

ation of VCAM-1 with CDR-SB (Supplementary 382

Figure 1b; slope not significantly different than 0, 383

p = 0.1395). Stratifying the sample by sex, we found 384

a trend for female (slope significantly different from 385

0), but not male sex as a modifier of the relationship 386

between VCAM-1 and CDR-SB (Supplementary 387

Figure 1c; p = 0.1888 and 0.0478 for men versus 388

women, respectively). Family history of AD was also 389

found to modify the relationship of VCAM-1 with 390

CDR-SB. However, this was observed only for pos- 391

itive family history in both parents; this finding was 392

significant before and after adjustment for variance 393

(p = 0.0148 and p = 0.0444, respectively), but there 394

were only 8 participants in this category (Table 1). 395

As only VCAM-1 was consistently correlated with 396

clinical diagnosis and global functional status, the 397

above analyses were not performed with respect to 398

ICAM-1 or E-Selectin levels. 399

CSF AD biomarkers 400

About half of participants also underwent lumbar 401

puncture by ADNI-1 protocol for collection of CSF 402

samples at the baseline visit. For the following anal- 403

yses, we included a subset of the original sample 404

(n = 351; n = 102 AD, n = 197 MCI, n = 57 CN) with 405

AD biomarker results in CSF (A�42, T-tau, P-tau, and 406
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Table 1
Data summary for ADNI-1 participants included in study

Characteristic, entire sample CN MCI AD

Demographics n = 58 n = 396 n = 112
Sex (% Female) 48.3 35.4 42.0
Age, y (Median, [1 IQR, 3 IQR]) 73.2 [71.1, 79.0] 75.1 [70.2, 80.4] 75.9 [69.4, 80.4]
Education, y (Median, [1 IQR, 3 IQR]) 16 [13, 18] 16 [14, 18] 16 [13, 18]

AD family history 17.2/8.6 20.0/6.8 22.3/8.9
(% maternal/paternal)

APOE (% E4 Non-carrier/ 92/8/0 46/42/12 32/47/21
Heterozygote/ Homozygote)

CDR-SB (Median, [1 IQR, 3 IQR]) 0 [0, 0] 1.5 [1, 2] 4 [3.5, 5]
CDR-Mem (Median, [1 IQR, 3 IQR]) 0 [0, 0] 0.5 [0.5, 0.50] 1 [1, 1]
MHIS (mean, SD, range) 0.64, 0.79, 0–3 0.62, 0.70, 0–4 0.66, 0.68, 0–3
Characteristic, CSF subgroup CN MCI AD
Demographics n = 57 n = 197 n = 102

Sex (% Female) 47.4 33.0 42.2
Age, y (Median, [1 IQR, 3 IQR]) 73.1 [71.1, 78.6] 74.6 [70.1, 79.6] 75.9 [70.7, 80.5]
Education, y (Median, [1 IQR, 3 IQR]) 16 [13, 18] 16 [14, 18] 16 [13, 18]

AD family history 17.5/8.8 24.3/8.1 22.6/9.8
(% maternal/paternal)

APOE (% E4 Non-carrier/ 91/9/0 47/43/10 30/47/23
Heterozygote/ Homozygote)

CDR-SB (Median, [1 IQR, 3 IQR]) 0 [0, 0] 1.5 [1, 2] 4 [3.5, 5]
CDR-Mem (Median, [1 IQR, 3 IQR]) 0 [0, 0] 0.5 [0.5, 0.5] 1 [1, 1]
MHIS (mean, SD, range) 0.63, 0.79, 0–3 0.59, 0.77, 0–3 0.66, 0.70, 0–3

AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; CDR-Mem, clinical dementia
rating-memory subscale; CDR-SB, clinical dementia rating-sum of boxes; CN, cognitively normal; CSF, cere-
brospinal fluid; E4, APOE �4 allele; 1 IQR, first interquartile range; 3 IQR, third interquartile range; MCI, mild
cognitive impairment; MHIS, modified Hachinski ischemic score; SD, standard deviation.

Table 2
CDR-SB modeled (additive) by the combination of VCAM-1, ICAM-1, or E-Selectin and CSF biomarkers

Dependent Variable CAMs p CSF biomarkers p DF

CDR-SB VCAM-1 0.0022 A�42 < 0.0001 353
0.0084 T-tau < 0.0001 348
0.0073 P-tau < 0.0001 354
0.0050 P-tau/A�42 < 0.0001 353

ICAM-1 0.0713 A�42 < 0.0001 353
0.0882 T-tau < 0.0001 348
0.0467 P-tau < 0.0001 354
0.0496 P-tau/A�42 < 0.0001 353

E-Selectin 0.2799 A�42 < 0.0001 353
0.3539 T-tau < 0.0001 348
0.2462 P-tau < 0.0001 354
0.2400 P-tau/A�42 < 0.0001 353

A�42, amyloid-� 42-residue peptide; CDR-SB, clinical dementia rating-sum of boxes; DF, degrees of freedom;
ICAM-1, intercellular adhesion molecule-1; P-tau, phosphorylated tau; T-tau, total tau; VCAM-1, vascular cell
adhesion molecule-1.

P-tau/A�42 ratio, log normal distributions), as well407

as measures of plasma VCAM-1, ICAM-1, and E-408

Selectin from concurrently collected blood samples.409

We found that neither VCAM-1, ICAM-1, nor E-410

selectin levels across our sample at baseline were411

significantly associated with any of the CSF biomark-412

ers (A�42, T-tau, or P-tau), or with P-tau/A�42 ratios413

(data not shown). Moreover, contrary to our predic-414

tion, there was no evidence of interactive association415

when CAMs were entered with CSF biomarkers into 416

the CDR-SB models individually (data not shown). 417

Instead, we observed significant additive relation- 418

ships for VCAM-1 when included in CDR-SB 419

models with A�42 (p = 0.0022), T-tau (p = 0.0084), 420

P-tau (p = 0.0084), or P-tau/A�42 ratios (p = 0.005); 421

we found additive contributions of ICAM-1 to CDR- 422

SB models that included either P-tau (p = 0.0467) or 423

the P-tau/A�42 ratio (p = 0.0496) (Table 2).
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Fig. 1. Associations of VCAM-1, ICAM-1, and E-Selectin with baseline diagnosis (figures in logarithmic scale). Dots with bars indicate
average levels with confidence intervals. AD, Alzheimer’s disease; ADNI; CN, cognitively normal; ICAM-1, intercellular adhesion molecule-
1; MCI, mild cognitive impairment; ng/mL, nanograms per milliliter; VCAM-1, vascular cell adhesion molecule-1; ∗p < 0.05; ∗∗p < 0.005.

DISCUSSION424

Current epidemiologic evidence suggests that425

potentially modifiable midlife vascular risk factors426

specifically influence risk for later-life, AD-ass-427

ociated cognitive decline. Despite this, a large knowl-428

edge gap still exists with respect to characterization429

of the biological overlap of highly co-morbid vas-430

cular and AD pathologies in clinical AD. Given431

recent emphasis on prevention-oriented strategies432

in AD, delineating the nature of clinical associa-433

tions between vascular-mediated processes and AD434

biomarkers is imperative.435

In this study, we first sought to explore whether 436

molecular indicators vascular endothelial dysfunc- 437

tion as indicated by soluble plasma CAM levels 438

would reliably estimate baseline AD-related clin- 439

ical diagnosis and/or functional impairment in a 440

cohort that was purposefully designed for study- 441

ing biomarkers in AD, in which contributions from 442

potential confounders such as significant vascular 443

cognitive impairment had been minimized. In our 444

cross-sectional analyses of ADNI-1 data, we found 445

that sample-wide baseline VCAM-1 and ICAM-1 446

(but not E-Selectin) levels had significant but modest 447

associations with AD-associated diagnosis. We had 448
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predicted that CAM levels would be lowest in CN449

subjects and concomitantly higher in MCI and AD450

groups, respectively, but found VCAM-1 and ICAM-451

1 to only be consistently higher in AD versus MCI452

groups. As an extension of our initial hypothesis, we453

had predicted that higher baseline peripheral CAMs454

levels would also correlate with severity of functional455

impairment staging and found that VCAM-1 (but not456

ICAM-1 or E-Selectin) again had a significant but rel-457

atively modest relationship to CDR-SB scores across458

the entire sample.459

Our main finding was related to our prediction that460

plasma CAMs and brain-based AD pathology would461

act synergistically in contributing to clinical sever-462

ity of AD. Contrary to our initial expectation, we463

found that plasma VCAM-1 and CSF AD biomarkers464

acted independently and observed more robust addi-465

tive effects when added to any of the CSF biomarkers466

in CDR-SB models. ICAM-1 was also observed to467

have an additive effect in these models, but to a more468

limited extent, and we observed no effects with E-469

Selectin in this model.470

Our hypothesis that sensitive molecular indicators471

of vascular endothelial dysfunction such as solu-472

ble plasma CAMs would indicate interactive rather473

than independent associations of vascular and AD474

pathologies was largely informed by recent experi-475

mental data. Peripheral immune cell trafficking into476

the brain has been reported in rodent models to477

occur with specific predilection for brain parenchyma478

affected by deposition of A� [70, 71] and tau [72],479

and one study reported high levels of both VCAM-480

1 and ICAM-1 expression in cerebral blood vessels481

adjacent to A� plaques [71]. Moreover, A� has482

been demonstrated to induce a CAM-mediated pro-483

inflammatory cascade in vascular endothelial cells484

[73], blood-brain barrier (BBB) dysfunction via485

endothelial and smooth muscle cell damage [74], and486

vasoconstriction via free radicals [75]. Interestingly,487

elevated pro-inflammatory CSF tumor necrosis fac-488

tor has been shown in a mouse model to drastically489

increase �-site amyloid precursor protein-cleaving490

enzyme 1 (BACE1) processing of CSF VCAM-1491

from its membrane-bound to soluble form, a process492

that was not prominent in healthy adult mice [76].493

Additionally, Yousef et. al. have demonstrated in a494

detailed series of studies of aging mice that a) the aged495

hippocampus expresses an inflammatory transcrip-496

tional profile that induces local microglial activation497

that is spatially associated with focal VCAM-1 upreg-498

ulation on the luminal side of the adjacent BBB; b)499

soluble VCAM-1 is elevated in aged mouse (and500

human) plasma, and aged plasma from mice and 501

humans induces VCAM-1 expression in cultured 502

brain endothelial cells and young mouse hippocampi; 503

and c) the effects of aged blood in this model 504

(including impaired cognition in a Barnes maze) 505

are mitigated by administration of an anti-VCAM- 506

1 antibody or genetic ablation of VCAM-1 [58]. 507

The proinflammatory effects of the dialyzed, aged 508

plasma that was used for experiments were specif- 509

ically found to not be related to soluble VCAM-1 510

itself, and authors surmised that pro-inflammatory 511

cytokine/chemokine signaling was likely responsi- 512

ble for the effect [58]. Of note, they found no 513

increased expression of ICAM-1, E-Selectin, or P- 514

Selectin at either mRNA or protein levels in their 515

model [58]. Yousef et al. also observed three distinct 516

populations of vascular endothelial cells, only two 517

of which expressed VCAM-1 together with either 518

pro-inflammatory genes or vascular remodeling and 519

Notch signaling markers [58]. It is interesting to note 520

parallels of these findings with an ApoE -/- mouse 521

model of atherosclerosis, where VCAM-1, ICAM- 522

1, and PECAM were all shown to be differentially 523

expressed and localized in response to hypercholes- 524

terolemia; however, only VCAM-1 upregulation 525

showed focal predilection for lesion-prone sites and 526

preceded atherosclerotic lesion formation [41]. 527

Human clinical studies to-date have consistently 528

demonstrated peripheral soluble CAMs to be elevated 529

in relation to various forms of dementia but have 530

yielded inconsistent results as to which CAMs are 531

most clinically relevant. For example, some groups 532

using different combinations of CAMs have shown 533

only VCAM-1 [49], ICAM-1 [51], or ICAM-1 and 534

PECAM-1 [50] to be elevated in AD compared with 535

controls, while Huang et al. found VCAM-1, ICAM- 536

1, and E-Selectin to all be elevated in AD compared 537

with controls, but only VCAM-1 to be associated 538

with dementia severity [48]. With respect to cerebral 539

vascular disease, E-Selectin (but not VCAM-1) was 540

associated with severity of small vessel disease on 541

CT in patients with vascular dementia and AD in one 542

study [49]; however, Huang et. al. found VCAM-1 543

(but not ICAM-1 or E-Selectin) to be associated with 544

cerebral vascular dysfunction in AD patients as mea- 545

sured by major tract-specific fractional anisotropy 546

quantification [48]. In two cross-sectional examina- 547

tions of community-dwelling older adults, Tchalla 548

et al. found that elevated plasma VCAM-1 (but 549

not ICAM-1) was associated with cognitive impair- 550

ment, decline in activities of daily living, slowed gait 551

speed, higher cerebral white matter hyperintensity 552
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volume on MRI, and cerebrovascular resistance as553

measured by transcranial doppler [52, 53]. Another554

group assessed an expanded panel of neuroinflamma-555

tory biomarkers including VCAM-1 and ICAM-1 in556

serum (and CSF) for cross-sectional associations with557

CSF AD biomarkers in normal community-dwelling558

adults and patients with cognitive impairment, and559

found that eight of the serum (including ICAM-1,560

but not VCAM-1) biomarkers best predicted a CSF561

AD profile defined by P-tau/A�42 ratio [55]. Lon-562

gitudinally, the Rotterdam study showed baseline563

�1-antichymotrypsin, interleukin-6, and C-reactive564

protein but not VCAM-1 or ICAM-1 to predict565

future dementia risk [77], while Yoon et. al. reported566

that soluble VCAM-1, ICAM-1, E-Selectin, and P-567

Selectin assessed longitudinally in healthy volunteers568

all increased with age, but only elevated ICAM-1 pre-569

dicted poorer cognitive performance years later [32].570

To our knowledge, ours is the first study to assess571

for interactive versus additive associations of blood-572

borne soluble CAMs and CSF AD biomarkers with573

respect to AD diagnosis and dementia severity stag-574

ing in a highly characterized AD cohort.575

There were several limitations of our study. These576

included the cross-sectional design, multiple compar-577

isons, and the smaller number of participants with578

CSF biomarkers relative to the overall cohort size. For579

simplicity, we specifically chose to limit this initial580

study to cross-sectional outcomes of AD-associated581

diagnosis and functional impairment in order to test582

our basic assumption that elevated CAMs would583

generally serve as a useful biomarker of vascular con-584

tributions to the clinical AD phenotype. Although our585

data suggest primacy of VCAM-1 among the CAMs586

tested herein with respect to clinical AD, and par-587

allel rather than interactive associations of soluble588

plasma VCAM-1 and ICAM-1 to CSF biomarkers589

of AD-pathology and neurodegeneration, these data590

should be interpreted with caution in the context591

of findings from other groups that were generated592

in studies with differing methodologies as outlined593

above. It is also possible that available sample sizes594

and/or the presence of outliers in ADNI data may have595

influenced our findings related to between-group dif-596

ferences in ICAM-1 and E-Selectin. Additionally, if597

membrane-bound VCAM-1 is in fact the key factor598

in mediating vascular-AD pathological interactions599

across the BBB as suggested by experimental stud-600

ies, the relative degrees to which individual CAMs are601

expressed longitudinally, solubilized, and detectable602

as blood-borne biomarkers in humans with chronic603

risk factors remains unclear. It may also be that604

use of blood-borne CAMs in isolation without pro- 605

inflammatory chemokine/cytokine and/or imaging 606

biomarkers is insufficient to fully capture clinically 607

relevant aspects of vascular contributions to AD via 608

mechanisms acting across the BBB. 609

Despite these limitations, our data lend weight to 610

the growing literature suggesting that soluble blood- 611

borne CAMs may serve as useful biomarkers for 612

studying the biological overlap of vascular and AD 613

pathologies in clinical AD. In order to validate these 614

findings, future studies of CAMs in ADNI data will 615

include assessment of associations with AD and 616

vascular imaging biomarkers, correlations with lon- 617

gitudinal cognitive and functional data, and likely 618

inclusion of CAMs in a more comprehensive panel 619

of peripheral inflammation and BBB dysfunction. 620

Future studies would also benefit from validation 621

across multiple large, longitudinal cohorts using stan- 622

dardized methodologies. 623
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Migliavacca E, Henry H, Kirkland R, Severin I, Wojcik J,931

Bowman GL (2017) Markers of neuroinflammation asso-932

ciated with Alzheimer’s disease pathology in older adults.933

Brain Behav Immun 62, 203–211.934

[56] Gupta VB, Hone E, Pedrini S, Doecke J, O’Bryant S, James935

I, Bush AI, Rowe CC, Villemagne VL, Ames D, Masters936

CL, Martins RN, AIBL Research Group (2017) Altered937

levels of blood proteins in Alzheimer’s disease longitu-938

dinal study: Results from Australian Imaging Biomarkers939

Lifestyle Study of Ageing cohort. Alzheimers Dement940

(Amst) 8, 60–72.941

[57] Hochstrasser T, Weiss E, Marksteiner J, Humpel C942

(2010) Soluble cell adhesion molecules in monocytes of943

Alzheimer’s disease and mild cognitive impairment. Exp944

Gerontol 45, 70–74.945

[58] Yousef H, Czupalla CJ, Lee D, Chen MB, Burke AN, Zera946

KA, Zandstra J, Berber E, Lehallier B, Mathur V, Nair R947

V, Bonanno LN, Yang AC, Peterson T, Hadeiba H, Merkel948

T, Körbelin J, Schwaninger M, Buckwalter MS, Quake SR,949

Butcher EC, Wyss-Coray T (2019) Aged blood impairs hip-950

pocampal neural precursor activity and activates microglia951

via brain endothelial cell VCAM1. Nat Med 25, 988–952

1000.953

[59] Li G, Shofer JB, Petrie EC, Yu CE, Wilkinson CW,954

Figlewicz DP, Shutes-David A, Zhang J, Montine TJ,955

Raskind MA, Quinn JF, Galasko DR, Peskind ER (2017)956

Cerebrospinal fluid biomarkers for Alzheimer’s and vas-957

cular disease vary by age, gender, and APOE genotype in958

cognitively normal adults. Alzheimers Res Ther 9, 48.959

[60] Markus HS, Hunt B, Palmer K, Enzinger C, Schmidt960

H, Schmidt R (2005) Markers of endothelial and hemo-961

static activation and progression of cerebral white matter962

hyperintensities: Longitudinal results of the Austrian Stroke963

Prevention Study. Stroke 36, 1410–1414.964
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